NMDA receptor-dependent synaptic activation of TRPC channels in olfactory bulb granule cells.
نویسندگان
چکیده
Canonical transient receptor potential (TRPC) channels are widely expressed throughout the nervous system including the olfactory bulb where their function is largely unknown. Here, we describe their contribution to central synaptic processing at the reciprocal mitral and tufted cell-granule cell microcircuit, the most abundant synapse of the mammalian olfactory bulb. Suprathreshold activation of the synapse causes sodium action potentials in mouse granule cells and a subsequent long-lasting depolarization (LLD) linked to a global dendritic postsynaptic calcium signal recorded with two-photon laser-scanning microscopy. These signals are not observed after action potentials evoked by current injection in the same cells. The LLD persists in the presence of group I metabotropic glutamate receptor antagonists but is entirely absent from granule cells deficient for the NMDA receptor subunit NR1. Moreover, both depolarization and Ca²⁺ rise are sensitive to the blockade of NMDA receptors. The LLD and the accompanying Ca²⁺ rise are also absent in granule cells from mice deficient for both TRPC channel subtypes 1 and 4, whereas the deletion of either TRPC1 or TRPC4 results in only a partial reduction of the LLD. Recordings from mitral cells in the absence of both subunits reveal a reduction of asynchronous neurotransmitter release from the granule cells during recurrent inhibition. We conclude that TRPC1 and TRPC4 can be activated downstream of NMDA receptor activation and contribute to slow synaptic transmission in the olfactory bulb, including the calcium dynamics required for asynchronous release from the granule cell spine.
منابع مشابه
Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells.
Recurrent inhibition in olfactory bulb mitral cells is mediated via reciprocal dendrodendritic synapses with granule cells. Although GABAergic granule cells express both NMDA and non-NMDA glutamate receptors, dendrodendritic inhibition (DDI) relies on the activation of NMDA receptors. Using whole-cell recordings from rat olfactory bulb slices, we now show that olfactory NMDA receptors have a du...
متن کاملAnalysis of Relations between NMDA Receptors and GABA Release at Olfactory Bulb Reciprocal Synapses
In the mammalian olfactory bulb, signal processing is mediated by synaptic interactions between dendrites. Glutamate released from mitral cell dendrites excites dendritic spines of granule cells, which in turn release GABA back onto the mitral cell dendrites, forming a reciprocal synaptic pair. This feedback synaptic circuit was shown to be mediated predominantly by NMDA receptors. We further u...
متن کاملDendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike.
In the mammalian olfactory bulb, axonless granule cells process synaptic input and output reciprocally within large spines. The nature of the calcium signals that underlie the presynaptic and postsynaptic function of these spines is mostly unknown. Using two-photon imaging in acute rat brain slices and glomerular stimulation of mitral/tufted cells, we observed two forms of action potential-inde...
متن کاملSynaptic organization and neurotransmitters in the rat accessory olfactory bulb.
The accessory olfactory bulb (AOB) is the first relay station in the vomeronasal system and may play a critical role in processing pheromone signals. The AOB shows similar but less distinct lamination compared with the main olfactory bulb (MOB). In this study, synaptic organization of the AOB was analyzed in slice preparations from adult rats by using both field potential and patch-clamp record...
متن کاملDendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors.
At many central excitatory synapses, AMPA receptors relay the electrical signal, whereas activation of NMDA receptors is conditional and serves a modulatory function. We show here quite a different role for NMDA receptors at dendrodendritic synapses between mitral and granule cells in the rat olfactory bulb. In whole-cell patch-clamp recordings in bulb slices, stimulation of mitral cells elicit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 17 شماره
صفحات -
تاریخ انتشار 2012